

Detection, vectorization and characterization of linear structures from LIDAR images

Bechir Ben-Rhima - - Jean-Yves Ramel Xavier Rodier - Clément Laplaige

EA 6300 - Laboratoire Informatique de Tours - RFAI UMR 7324 - CITERES-LAT

Outline

- Introduction
 - □ Context : SOLIDAR project
 - □ Collaboration between archeologists / computer scientists
 - □ Targeted frameworks
- From LIDAR data to the targeted layers
 - Characteristics of the desired archaeological structures
 - □ First approach: Image processing
 - Second thought: Machine learning approach
- Vectorization and tagging
 - □ Selected vectorization technique
 - □ Interest of Post-processing
- Conclusion et perspectives

Introduction

- SOLIDAR project
 - □ Supported by Region Centre
 - Studied Location: Forêts de Chambord, Boulogne, Russy et Blois
- Provided data

 - □ LIDAR XYZ point cloud → Classification and filtering
 → Digital Elevation Model(DEM) that represents the ground Mass of data, High précision (50cm x 50cm), ...

Introduction

- Detection and Analysis of linear structure (lineaments)
 - □ Thousand of kilometers inside the studied place in SOLiDAR
 - □ Visual analysis and manual vectorization is a tedious task
 - □ Subjectivity and non-exhaustivity
- Which kind of raster images derivated from LIDAR to used?
 Adequacy with lineament detection
 - □ Hillshade Model? Slope/Gradient Model? Local Relief Model? ...
 - □ Second thought: use of multiple sources (multimodal analysis)

Introduction

■ It is just the beginning... → Targeted Frameworks

□ First approach: Image processing

□ Second thought: Machine Learning

Selection the good scale or multi-scales analysis

- Image analysis approach
 - □ Goal : Image (DEM) separation into the targeted information layers
 - \square Results : 1 layer = 1 binary image to vectorize
- Possible processing
 - □ Filtering: median /Gaussian...
 - □ Multiple thresholding
 - Mathematical Morphology operations
 - Connected component analysis
 - □ Arithmetic operation between processed DEM and layers

- Machine learning approach (to be done)
 - □ Goal : pixel classification into the 4 categories \approx 4 layers
 - Results : 1 probability map = 1 fuzzy layer
- Tasks to do
 - □ Feature definition to describe the pixels
 - Construction of a Learning dataset
 - □ Classifier model definition (SVM, CNN, ...)
 - Analysis of probability maps (post-processing?)
 - Combination of classification results (probability maps)

1 pixel = List of features → Classification →

[Lidar, gradient, intensity, texture, ...]

- Fossé = 0,9
- Talus = 0,3
- Ornières = *0*, *1*

- What is a probability maps?
- 1 pixel = n probabilities corresponding to the n classes

Visualisation : 1 probability value = 1 color intensity

Vectorization and tagging

- Vectorization → Polygonal approximation of the skeleton or contours
- Which method ? recursive, iterative → VectoGraph [RameI2000]
- Higher level results : Vectors + Quadrilaterals + CC

Vectorisation and tagging (layer 1)

Vectorisation and tagging (layer 2)

Conclusion et perspectives

- Actual situation / results
 - Data and terminology understanding
 - □ Study of the related works (LIDAR \rightarrow image \rightarrow interpretation)
 - Definition of possible frameworks
 - Implementation of the image processing part (layer extraction + vectorization)
 - □ Image processing approach will not be sufficient

To do

- □ Switching to Machine Learning approach
- □ Feature selection, definition
- Construction of the Learning dataset
- Implementation of the classifier
- □ Experiments for performance evaluation

Thanks

Questions ?

Annexe

Model Sky View Factor

