Detection, vectorization and characterization of linear structures from LIDAR images

Bechir Ben-Rhima - Jean-Yves Ramel
Xavier Rodier - Clément Laplaige

EA 6300 - Laboratoire Informatique de Tours - RFAI
UMR 7324 - CITERES-LAT
Outline

- Introduction
 - Context : SOLIDAR project
 - Collaboration between archeologists / computer scientists
 - Targeted frameworks

- From LIDAR data to the targeted layers
 - Characteristics of the desired archaeological structures
 - First approach: Image processing
 - Second thought: Machine learning approach

- Vectorization and tagging
 - Selected vectorization technique
 - Interest of Post-processing

- Conclusion et perspectives
Introduction

- SOLIDAR project
 - Supported by Region Centre
 - Studied Location: Forêts de Chambord, Boulogne, Russy et Blois

- Provided data
 - LIDAR XYZ point cloud ➔ Classification and filtering ➔ Digital Elevation Model (DEM) that represents the ground
 - Mass of data, High précision (50cm x 50cm), ...
Introduction

- Detection and Analysis of linear structure (lineaments)
 - Thousand of kilometers inside the studied place in SOLiDAR
 - Visual analysis and manual vectorization is a tedious task
 - Subjectivity and non-exhaustivity

- Which kind of raster images derivated from LIDAR to used?
 - Adequacy with lineament detection
 - Hillshade Model? Slope/Gradient Model? **Local Relief Model**? ...
 - Second thought: use of multiple sources (multimodal analysis)
Introduction

- It is just the beginning... ➔ Targeted Frameworks
 - First approach: Image processing
 - Second thought: Machine Learning

LIDAR data → Reconstruction → Image LRM (pixels) → Image HS (pixels) → Filtering, analysis, threshold → Layer $i-1$ → Layer i of information (binary image) → Layer $i+1$ → Vectorisation & characterisation → Vectorized and tagged data (SVG++)

LIDAR data → Reconstruction → Image LRM (pixels) → Image HS (pixels) → Characterisation Classification → Layer $i-1$ → Layer i of information (prob. maps) → Layer $i+1$ → Vectorisation & characterisation → Vectorized and tagged data (SVG++)
From LIDAR data to the targeted layers

- Selection the good scale or multi-scales analysis
From LIDAR data to the targeted layers

- Characteristics of the lineaments
- 4 selected categories:
 - Talus
 - Talus-fossé
 - Fossés bordiers

Talus ➔ Slope
Fossé ➔ ditch, gap
Fossé bordier ➔ « double ditch »
Ornière ➔ rut
From LIDAR data to the targeted layers

- Image analysis approach
 - Goal: Image (DEM) separation into the targeted information layers
 - Results: 1 layer = 1 binary image to vectorize

- Possible processing
 - Filtering: median /Gaussian...
 - Multiple thresholding
 - Mathematical Morphology operations
 - Connected component analysis
 - Arithmetic operation between processed DEM and layers
From LIDAR data to the targeted layers

- Results:
 1 layer = 1 binary image

Layer fossés (gap)

Layer Talus (slope) + fossés + ...
From LIDAR data to the targeted layers

- Machine learning approach (to be done)
 - Goal: pixel classification into the 4 categories ≈ 4 layers
 - Results: 1 probability map = 1 fuzzy layer

- Tasks to do
 - Feature definition to describe the pixels
 - Construction of a Learning dataset
 - Classifier model definition (SVM, CNN, ...)
 - Analysis of probability maps (post-processing?)
 - Combination of classification results (probability maps)

1 pixel = List of features → Classification → [Lidar, gradient, intensity, texture, ...]

- Fossé = 0.9
- Talus = 0.3
- Ornières = 0.1
From LIDAR data to the targeted layers

- What is a probability maps?
- 1 pixel = n probabilities corresponding to the n classes

Visualisation : 1 probability value = 1 color intensity
Vectorization and tagging

- Vectorization \Rightarrow Polygonal approximation of the skeleton or **contours**
- Which method? recursive, **iterative** \Rightarrow VectoGraph [Ramel2000]
- Higher level results: Vectors + Quadrilaterals + CC
Vectorisation and tagging (layer 1)
Vectorisation and tagging (layer 2)

Still working…
Conclusion et perspectives

- Actual situation / results
 - Data and terminology understanding
 - Study of the related works (LIDAR \rightarrow image \rightarrow interpretation)
 - Definition of possible frameworks
 - Implementation of the image processing part (layer extraction + vectorization)
 - Image processing approach will not be sufficient

- To do
 - Switching to Machine Learning approach
 - Feature selection, definition
 - Construction of the Learning dataset
 - Implementation of the classifier
 - Experiments for performance evaluation
Thanks

Questions ?
Annexe

- Model Sky View Factor

Sommet et terrain plat : angle de ciel visible important
Vallée ou creux : angle de ciel visible plus faible

In Michael Doneus : Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models

Remote Sensing 2013, 5(12), 6427-6442; doi:10.3390/rs5126427